innovations in nucleic acid isolation ## DS Buffer Omega Bio-tek Version No: 2.7.3.1 Safety Data Sheet according to OSHA HazCom Standard (2012) requirements Chemwatch Hazard Alert Code: : Issue Date: **04/19/2021**Print Date: **05/18/2021**S.GHS.USA.EN #### **SECTION 1 Identification** #### **Product Identifier** | Product name DS Buffer | | |-------------------------------|---------------| | Synonyms | Not Available | | Other means of identification | Not Available | #### Recommended use of the chemical and restrictions on use Relevant identified uses For research use only. #### Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party | Registered company name | Omega Bio-tek | | |-------------------------|---|--| | Address | 400 Pinnacle Way, Suite 450 Georgia 30071 United States | | | Telephone | 0-391-8400 | | | Fax | -770-931-0230 | | | Website | http://www.omegabiotek.com/ | | | Email | info@omegabiotek.com | | ## Emergency phone number | | Association / Organisation | CHEMTREC | |--|-----------------------------|--------------------------------------| | | Emergency telephone numbers | USA & Canada: 1-800-424-9300 | | Other emergency telephone numbers Outside USA & Canada: 1-703-527-3887 | | Outside USA & Canada: 1-703-527-3887 | #### SECTION 2 Hazard(s) identification ## Classification of the substance or mixture NFPA 704 diamond Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances) Classification Acute Aquatic Hazard Category 3, Serious Eye Damage/Eye Irritation Category 1, Skin Corrosion/Irritation Category 2 ## Label elements Hazard pictogram(s) Page 2 of 10 DS Buffer Issue Date: **04/19/2021**Print Date: **05/18/2021** | Signal word | Dange | |-------------|-------| |-------------|-------| #### Hazard statement(s) | H402 | Harmful to aquatic life. | | |------|----------------------------|--| | H318 | Causes serious eye damage. | | | H315 | Causes skin irritation. | | #### Hazard(s) not otherwise classified Not Applicable #### Precautionary statement(s) Prevention | P280 Wear protective gloves/protective clothing/eye protection/face protection. | | |---|-----------------------------------| | P273 | Avoid release to the environment. | #### Precautionary statement(s) Response | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | |----------------|--|--| | P310 | Immediately call a POISON CENTER or doctor/physician. | | | P362 | Take off contaminated clothing and wash before reuse. | | | P302+P352 | IF ON SKIN: Wash with plenty of water and soap. | | | P332+P313 | P332+P313 If skin irritation occurs: Get medical advice/attention. | | #### Precautionary statement(s) Storage Not Applicable #### Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation. #### **SECTION 3 Composition / information on ingredients** #### Substances See section below for composition of Mixtures ### Mixtures | CAS No | %[weight] | Name | |---------------|-----------|-------------------| | Not Available | 10-25 | Anionic detergent | The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret. ## **SECTION 4 First-aid measures** ## Description of first aid measures #### If this product comes in contact with the eyes: ▶ Immediately hold eyelids apart and flush the eye continuously with running water. Figure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper **Eye Contact** and lower lids Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. F Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: ▶ Immediately remove all contaminated clothing, including footwear. Skin Contact Flush skin and hair with running water (and soap if available). ▶ Seek medical attention in event of irritation. If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation ▶ Other measures are usually unnecessary. If swallowed do **NOT** induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Ingestion Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Seek medical advice. ## Most important symptoms and effects, both acute and delayed See Section 11 #### Indication of any immediate medical attention and special treatment needed Treat symptomatically Version No: 2.7.3.1 Page 3 of 10 **DS Buffer** Issue Date: 04/19/2021 Print Date: 05/18/2021 #### **SECTION 5 Fire-fighting measures** #### **Extinguishing media** - Foam - Dry chemical powder. - ► BCF (where regulations permit). - Carbon dioxide. - ▶ Water spray or fog Large fires only. #### Special hazards arising from the substrate or mixture Fire Incompatibility Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result #### Special protective equipment and precautions for fire-fighters # Fire Fighting - Alert Fire Brigade and tell them location and nature of hazard. - Wear full body protective clothing with breathing apparatus. ▶ Prevent, by any means available, spillage from entering drains or water course. - Use water delivered as a fine spray to control fire and cool adjacent area. - Avoid spraying water onto liquid pools. - ▶ DO NOT approach containers suspected to be hot. - Cool fire exposed containers with water spray from a protected location. - If safe to do so, remove containers from path of fire. - Combustible. - Slight fire hazard when exposed to heat or flame. - Heating may cause expansion or decomposition leading to violent rupture of containers. - ► On combustion, may emit toxic fumes of carbon monoxide (CO). - May emit acrid smoke. ## Fire/Explosion Hazard Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. May emit poisonous fumes May emit corrosive fumes. #### **SECTION 6 Accidental release measures** #### Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 #### Methods and material for containment and cleaning up ## **Minor Spills** - ▶ Remove all ignition sources. - ► Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. - Control personal contact with the substance, by using protective equipment. ▶ Contain and absorb spill with sand, earth, inert material or vermiculite - ▶ Wipe up. - Place in a suitable, labelled container for waste disposal. - Moderate hazard. - Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. - Wear breathing apparatus plus protective gloves. - Prevent, by any means available, spillage from entering drains or water course. - ▶ No smoking, naked lights or ignition sources. ## **Major Spills** - Increase ventilation. Stop leak if safe to do so. - Contain spill with sand, earth or vermiculite. - Collect recoverable product into labelled containers for recycling. - Absorb remaining product with sand, earth or vermiculite. - Collect solid residues and seal in labelled drums for disposal. - Wash area and prevent runoff into drains. - If contamination of drains or waterways occurs, advise emergency services. Personal Protective Equipment advice is contained in Section 8 of the SDS. ## **SECTION 7 Handling and storage** #### Precautions for safe handling ## Safe handling - Avoid all personal contact, including inhalation. - Wear protective clothing when risk of exposure occurs - Use in a well-ventilated area - Prevent concentration in hollows and sumps. - DO NOT enter confined spaces until atmosphere has been checked. Version No: **2.7.3.1** Page **4** of **10** **DS Buffer** Issue Date: **04/19/2021**Print Date: **05/18/2021** - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - ► When handling, **DO NOT** eat, drink or smoke. - Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - Work clothes should be laundered separately. - Use good occupational work practice. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. - Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. - ► DO NOT allow clothing wet with material to stay in contact with skin ## Other information - ► Store in original containers. - Keep containers securely sealed. - No smoking, naked lights or ignition sources. - nation Store in a cool, dry, well-ventilated area. - ▶ Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. #### Conditions for safe storage, including any incompatibilities #### Suitable container - Metal can or drum - Packaging as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks. #### Storage incompatibility ► Avoid reaction with oxidising agents #### SECTION 8 Exposure controls / personal protection #### Control parameters Occupational Exposure Limits (OEL) #### INGREDIENT DATA Not Available #### Emergency Limits | ingrealent | I CCL-I | IEEL-2 | | IEEL-3 | | |------------|---------------|---------------|---------------|---------------|--| | DS Buffer | Not Available | Not Available | | Not Available | | | Ingredient | Original IDLH | | Revised IDLH | | | | DS Buffer | Not Available | | Not Available | | | ## **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. General exhaust is adequate under normal operating conditions. If risk of overexposure exists, wear SAA approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. ## Appropriate engineering controls | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air) | 0.25-0.5 m/s
(50-100 f/min) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | | |---|------------------------------------|--| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | | 2: Contaminants of low toxicity or of nuisance value only | 2: Contaminants of high toxicity | | | 3: Intermittent, low production. | 3: High production, heavy use | | | 4: Large hood or large air mass in motion | 4: Small hood - local control only | | Page 5 of 10 DS Buffer Issue Date: **04/19/2021**Print Date: **05/18/2021** Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ### Personal protection # Eye and face protection Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] #### Skin protection See Hand protection below - Wear chemical protective gloves, e.g. PVC. - ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: - frequency and duration of contact, - chemical resistance of glove material, - glove thickness and - dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. - · When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. #### Hands/feet protection · Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. - Contaminated gloves should be replaced. - As defined in ASTM F-739-96 in any application, gloves are rated as: - · Excellent when breakthrough time > 480 min - · Good when breakthrough time > 20 min - Fair when breakthrough time < 20 min - Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: - · Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. - · Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ## Body protection See Other protection below ## Other protection - Overalls. - P.V.C apron.Barrier cream. - Skin cleansing cream. - ► Eye wash unit. #### Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face Respirator | Full-Face Respirator | |------------------------------------|--|----------------------|----------------------| | up to 10 | 1000 | A-AUS / Class1 | - | | up to 50 | 1000 | - | A-AUS / Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | Page 6 of 10 Issue Date: **04/19/2021**Print Date: **05/18/2021** _____ DS Buffer | up to 100 | 10000 | _ | A-3 | |-----------|-------|---|-----------| | 100+ | | | Airline** | $^{^{\}star}$ - Continuous Flow ** - Continuous-flow or positive pressure demand $A(All \ classes) = Organic \ vapours, \ B \ AUS \ or \ B1 = Acid \ gasses, \ B2 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ B3 = Acid \ gas \ or \ hydrogen \ cyanide(HCN), \ E = Sulfur \ dioxide(SO2), \ G = Agricultural \ chemicals, \ K = Ammonia(NH3), \ Hg = Mercury, \ NO = Oxides \ of \ nitrogen, \ MB = Methyl \ bromide, \ AX = Low \ boiling \ point \ organic \ compounds(below 65 \ degC)$ - ▶ Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used #### **SECTION 9 Physical and chemical properties** ## Information on basic physical and chemical properties | Appearance | Not Available | | | |--|---------------|---|---------------| | Physical state | Liquid | Relative density (Water = 1) | Not Available | | Odour | Not Available | Partition coefficient n-octanol / water | Not Available | | Odour threshold | Not Available | Auto-ignition temperature (°C) | Not Available | | pH (as supplied) | Not Available | Decomposition temperature | Not Available | | Melting point / freezing point (°C) | Not Available | Viscosity (cSt) | Not Available | | Initial boiling point and boiling range (°C) | Not Available | Molecular weight (g/mol) | Not Available | | Flash point (°C) | Not Available | Taste | Not Available | | Evaporation rate | Not Available | Explosive properties | Not Available | | Flammability | Not Available | Oxidising properties | Not Available | | Upper Explosive Limit (%) | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Lower Explosive Limit (%) | Not Available | Volatile Component (%vol) | Not Available | | Vapour pressure (kPa) | Not Available | Gas group | Not Available | | Solubility in water | Immiscible | pH as a solution (1%) | Not Available | | Vapour density (Air = 1) | Not Available | VOC g/L | Not Available | #### **SECTION 10 Stability and reactivity** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 Toxicological information** #### Information on toxicological effects | illiorniation on toxicological el | 1000 | |-----------------------------------|--| | Inhaled | The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. | | Ingestion | Accidental ingestion of the material may be damaging to the health of the individual. | | Skin Contact | Skin contact with the material may be harmful; systemic effects may result following absorption. This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Anionic surfactants can cause skin redness and pain, as well as a rash. Cracking, scaling and blistering can occur. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. | Version No: 2.7.3.1 Page 7 of 10 Issue Date: 04/19/2021 Print Date: 05/18/2021 #### **DS Buffer** | Еуе | If applied to the eyes, this material causes severe eye damage. Direct eye contact with some anionic surfactants in high concentration can cause severe damage to the cornea. Low concentrations can cause discomfort, excess blood flow, and corneal clouding and swelling. Recovery may take several days. | | |-----------|---|---------------------------| | Chronic | Long-term exposure to the product is not thought to produce chronic effects adverse to the health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Sodium lauryl sulfate has been reported to cause lung irritation and allergy resulting in hyperactive airway dysfunction, fatigue, malaise and aches. Significant symptoms of exposure can persist for more than two years and can be activated by a variety of non-specific environmental stimuli such as exhaust, perfumes and passive smoking. Prolonged or repeated skin contact may cause degreasing, followed by drying, cracking and skin inflammation. | | | | | | | DS Buffer | TOXICITY Not Available | IRRITATION Not Available | | DS Buffer | TOXICITY Not Available | IRRITATION Not Available | |-----------|---|---------------------------| | Legend: | Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances | | Alkyl sulfates are irritating to the skin, harmful if swallowed and at risk of causing serious damage to the eyes. They are metabolised by the liver and excreted via urine. They produce dose-dependent toxicity depending on their structure. They do not cause cancer, reproductive or genetic defects. However, at levels that are toxic to the mother, it may produce foetal defects during organ formation. For alkyl sulfates; alkane sulfonates and alpha-olefin sulfonates Most chemicals of this category are not defined substances, but mixtures of homologues with different alkyl side chains. Common physical and/or biological pathways result in structurally similar breakdown products, and are, together with the surfactant properties, responsible for similar environmental behavior and essentially identical hazard profiles with regard to human health. Acute toxicity: These substances are well absorbed after ingestion; penetration through the skin is however, poor. After absorption, these chemicals are distributed mainly to the liver. In animals, signs of poisoning by mouth include lethargy, hair standing up, decreased motor activity and breathing rate, and diarrhea. Poisoning from skin contact caused irritation, tremor, tonic-clonic convulsions, breathing failure, and weight loss. The C-12-akyl sulfate sodium salt caused the greatest effect. DS Buffer In eye irritation tests, C-12 containing alkyl sulfates at greater than 10% concentration were severely irritating and produced irreversible effects on the cornea. With increasing alkyl chain length, the irritating potential decreases, and the longer species are only mildly irritant. Animal studies have not shown alkyl sulfates and C14-18 alpha-olefin sulfonates to cause skin sensitization. However there is anecdotal evidence to suggest sodium lauryl sulfate causes sensitization of the lung, resulting in hyperactive airway dysfunction and lung allergy, accompanied by fatigue, malaise and aching. Significant symptoms of exposure can persist for more than two years, and can be activated by a variety of non-specific environmental stimuli, such as exhaust, perfumes and passive smoking. Airborne sulfonates may be responsible for respiratory allergies, and in some cases, minor skin allergies. Repeated skin contact with some sulfonated surfactants has produced skin inflammation was sensitization in predisposed individuals Repeat dose toxicity: The liver seems to be the only organ that is affected by repeated exposure, with elevated levels of liver enzymes, an increase in liver weight and enlargement of liver cells being seen. Genetic toxicity: Alkyl sulfates and alkyl-olefin sulfonates do not appear to cause mutations or genetic toxicity. Cancer-causing potential: Animal testing suggested that alkyl sulfates and alpha-olefin sulfonates do not have cancer-causing potential. Reproductive toxicity: In animal testing, these substances only caused harm to the foetus and/or offspring at levels which were toxic to the mother Developmental toxicity: Alkane sulfonates are not considered to be toxic to development. | Acute Toxicity | × | Carcinogenicity | × | |-----------------------------------|----------|--------------------------|---| | Skin Irritation/Corrosion | ~ | Reproductivity | × | | Serious Eye Damage/Irritation | ~ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | x | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: 💢 – Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 Ecological information** ## Toxicity | | Endpoint | Test Duration (hr) | Species | Value | Source | |-----------|------------------|--|--|--------------------------|------------------| | DS Buffer | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | Legend: | V3.12 (QSAR |) - Aquatic Toxicity Data (Estimated) 4. | HA Registered Substances - Ecotoxicological Info
US EPA, Ecotox database - Aquatic Toxicity Data
II (Japan) - Bioconcentration Data 8. Vendor Data | 5. ECETOC Aquatic Hazard | | Harmful to aquatic organisms. For Surfactants: Kow cannot be easily determined due to hydrophilic/hydrophobic properties of the molecules in surfactants. BCF value: 1-350. Aquatic Fate: Surfactants tend to accumulate at the interface of the air with water and are not extracted into one or the other liquid phases Terrestrial Fate: Anionic surfactants are not appreciably sorbed by inorganic solids. Cationic surfactants are strongly sorbed by solids, particularly clays. Significant sorption of anionic and non-ionic surfactants has been observed in activated sludge and organic river sediments. Surfactants have been shown to improve water infiltration into soils with moderate to severe hydrophobic or water-repellent properties. Ecotoxicity: Some surfactants are known to be toxic to animals, ecosystems and humans, and can increase the diffusion of other environmental contaminants. The acute aquatic toxicity generally is considered to be related to the effects of the surfactant properties on the organism and not to direct chemical toxicity. Surfactants should be considered to be toxic to aquatic species under conditions that allow contact of the chemicals with the organisms. Surfactants are expected to transfer slowly from water into the flesh of fish. During this process, readily biodegradable surfactants are expected to be metabolized rapidly during the process of bioaccumulation. Surfactants are not to be considered to show bioaccumulation potential if they are readily biodegradable. DO NOT discharge into sewer or waterways Page 8 of 10 **DS Buffer** Issue Date: 04/19/2021 Print Date: 05/18/2021 | Ingredient | Persistence: Water/Soil | Persistence: Air | |------------|--|--| | | No Data available for all ingredients | No Data available for all ingredients | | | The Data available for all high calculations | The Data available for all ling real line. | #### Bioaccumulative potential | Ingredient | Bioaccumulation | |------------|---------------------------------------| | | No Data available for all ingredients | #### Mobility in soil | Ingredient | Mobility | |------------|---------------------------------------| | | No Data available for all ingredients | #### **SECTION 13 Disposal considerations** #### Waste treatment methods - ▶ Containers may still present a chemical hazard/ danger when empty. - Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ▶ Reuse - ► Recycling - Product / Packaging disposal - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains. - It may be necessary to collect all wash water for treatment before disposal. - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - ▶ Where in doubt contact the responsible authority. - Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - Recycle containers if possible, or dispose of in an authorised landfill. ## **SECTION 14 Transport information** ### Labels Required **Marine Pollutant** Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code | Product name | Group | |-------------------|---------------| | Anionic detergent | Not Available | #### Transport in bulk in accordance with the ICG Code | Product name | Ship Type | |-------------------|---------------| | Anionic detergent | Not Available | ## **SECTION 15 Regulatory information** Safety, health and environmental regulations / legislation specific for the substance or mixture ### **Federal Regulations** Superfund Amendments and Reauthorization Act of 1986 (SARA) ## Section 311/312 hazard categories | Flammable (Gases, Aerosols, Liquids, or Solids) | | | |---|----|--| | Gas under pressure | No | | | Explosive | No | | Version No: **2.7.3.1** Page 9 of 10 DS Buffer Issue Date: **04/19/2021**Print Date: **05/18/2021** | Self-heating | No | |--|-----| | | | | Pyrophoric (Liquid or Solid) | No | | Pyrophoric Gas | No | | Corrosive to metal | No | | Oxidizer (Liquid, Solid or Gas) | No | | Organic Peroxide | No | | Self-reactive | No | | In contact with water emits flammable gas | No | | Combustible Dust | No | | Carcinogenicity | No | | Acute toxicity (any route of exposure) | No | | Reproductive toxicity | No | | Skin Corrosion or Irritation | Yes | | Respiratory or Skin Sensitization | No | | Serious eye damage or eye irritation | | | Specific target organ toxicity (single or repeated exposure) | | | Aspiration Hazard | | | Germ cell mutagenicity | | | Simple Asphyxiant | | | Hazards Not Otherwise Classified | | #### US. EPA CERCLA Hazardous Substances and Reportable Quantities (40 CFR 302.4) None Reported #### **State Regulations** ## US. California Proposition 65 None Reported ## **National Inventory Status** | National Inventory | Status | |--|---| | Australia - AIIC / Australia
Non-Industrial Use | Yes | | Canada - DSL | Yes | | Canada - NDSL | Yes | | China - IECSC | Yes | | Europe - EINEC / ELINCS / NLP | Yes | | Japan - ENCS | Yes | | Korea - KECI | Yes | | New Zealand - NZIoC | Yes | | Philippines - PICCS | Yes | | USA - TSCA | Yes | | Taiwan - TCSI | Yes | | Mexico - INSQ | Yes | | Vietnam - NCI | Yes | | Russia - FBEPH | Yes | | Legend: | Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | ## **SECTION 16 Other information** | Revision Date | 04/19/2021 | |---------------|------------| | Initial Date | 01/22/2021 | ## **SDS Version Summary** | Version | Date of Update | Sections Updated | |---------|----------------|-------------------| | 0.0.3.1 | 05/10/2021 | Regulation Change | ## Other information Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** Version No: 2.7.3.1 Page 10 of 10 Print Date: 05/18/2021 **DS Buffer** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit $_{\circ}$ IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances Powered by AuthorITe, from Chemwatch. Issue Date: 04/19/2021