

innovations in nucleic acid isolation

HDQ Binding Buffer Omega Bio-tek

Version No: **3.6.1.1**Safety Data Sheet according to WHMIS 2015 requirements

Chemwatch Hazard Alert Code: 4

Issue Date: **05/25/2021**Print Date: **05/25/2021**S.GHS.CAN.EN

SECTION 1 Identification

Product Identifier

Product name	HDQ Binding Buffer
Synonyms	Not Available
Other means of identification	Not Available

Recommended use of the chemical and restrictions on use

Relevant identified uses For research use only.

Name, address, and telephone number of the chemical manufacturer, importer, or other responsible party

Registered company name	Omega Bio-tek	
Address	400 Pinnacle Way, Suite 450 Georgia 30071 United States	
Telephone	1-770-391-8400	
Fax	1-770-931-0230	
Website	http://www.omegabiotek.com/	
Email	info@omegabiotek.com	

Emergency phone number

Association / Organisation	CHEMTREC	
Emergency telephone numbers	USA & Canada: 1-800-424-9300	
Other emergency telephone numbers	Outside USA & Canada: 1-703-527-3887	

SECTION 2 Hazard(s) identification

Classification of the substance or mixture

NFPA 704 diamond

Note: The hazard category numbers found in GHS classification in section 2 of this SDSs are NOT to be used to fill in the NFPA 704 diamond. Blue = Health Red = Fire Yellow = Reactivity White = Special (Oxidizer or water reactive substances)

Canadian WHMIS Symbols

Classification Eye Irritation Category 2A, Oxidizing Liquid Category 1, Acute Toxicity (Oral) Category 4

Version No: 3.6.1.1

Page 2 of 10

HDQ Binding Buffer

Issue Date: **05/25/2021**Print Date: **05/25/2021**

Signal word

ord Dange

Hazard statement(s)

H319	Causes serious eye irritation.	
H271	May cause fire or explosion; strong oxidiser.	
H302	Harmful if swallowed.	

Physical and Health hazard(s) not otherwise classified

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.	
P220	Keep away from clothing and other combustible materials.	
P283	Vear fire resistant or flame retardant clothing.	
P270	Do not eat, drink or smoke when using this product.	
P280	Wear protective gloves/protective clothing/eye protection/face protection.	

Precautionary statement(s) Response

P370+P378	In case of fire: Use to extinguish.	
P371+P380+P375	In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P306+P360	IF ON CLOTHING: Rinse immediately contaminated clothing and skin with plenty of water before removing clothes.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P301+P312	IF SWALLOWED: Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.	
P330	Rinse mouth.	

Precautionary statement(s) Storage

P420 Store separately.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
7601-89-0	50-100	sodium perchlorate

The specific chemical identity and/or exact percentage (concentration) of composition has been withheld as a trade secret.

SECTION 4 First-aid measures

Description of first aid measures

Description of first and measures		
Eye Contact	If this product comes in contact with the eyes: Nash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.	
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.	
Inhalation	 If fumes, aerosols or combustion products are inhaled remove from contaminated area. Other measures are usually unnecessary. 	
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. 	

Version No: 3.6.1.1 Page 3 of 10 Issue Date: 05/25/2021

HDQ Binding Buffer

Print Date: 05/25/2021

Indication of any immediate medical attention and special treatment needed

Antithyroid effects produced by the perchlorates may be reversed with iodine. Patients should be warned to report the development of sore throat, fever or rashes since these are indicative of blood abnormalities.

For chlorates

For severe intoxication: Empty the stomach by lavage and aspiration or by emesis, give demulcents or sweetened drinks and maintain respiration. Pethidine may be given if required. A 1% solution of sodium thiosulfate may be used for lavage and may also be given by intravenous infusion. Haemodialysis, peritoneal dialysis or exchange perfusions may be of value in removing chlorate from the blood. Forced diuresis should not be attempted if there is inadequate urine input.

MARTINDALE: The Extra Pharmacopoeia, 27th Edition

The high sensitivity of glucose-6-phosphate dehydrogenase to denaturation by chlorate explains the inefficacy of methylene blue to reduce methaemoglobin formed, as the antidotal effect of methylene blue depends on NADPH formed mainly by the oxidation of glucose-6-phosphate. The observed changes occur only in the presence of methaemoglobin which forms a destabilising complex with chlorate. Methaemoglobin thus autocatalytically increases methaemoglobin formation and destruction of the erythrocyte.

SECTION 5 Fire-fighting measures

Extinguishing media

- ▶ There is no restriction on the type of extinguisher which may be used
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

Fire Incompatibility

None known.

Special protective equipment and precautions for fire-fighters

	Alert Fire Brigade and tell them location and nature of hazard.
	Wear breathing apparatus plus protective gloves in the event of a fire.
	Prevent, by any means available, spillage from entering drains or water courses.
Fire Fighting	Use fire fighting procedures suitable for surrounding area.
Fire Fighting	DO NOT approach containers suspected to be hot.
	l

- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire
- Full Equipment should be thoroughly decontaminated after use.
- Fire/Explosion Hazard
- Will not burn but increases intensity of fire.
- ▶ Heating may cause expansion or decomposition leading to violent rupture of containers.
- ▶ Heat affected containers remain hazardous.
- Contact with combustibles such as wood, paper, oil or finely divided metal may produce spontaneous combustion or violent decomposition.
- May emit irritating, poisonous or corrosive fumes. Decomposition may produce toxic fumes of:

hydrogen chloride

May emit poisonous fumes.

May emit corrosive fumes.

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

▶ No smoking, naked lights, ignition sources.
Avoid all contact with any organic matter including fuel, solvents, sawdust, paper or cloth and other incompatible materials, as ignition may
result.

Minor Spills

- Avoid breathing dust or vapours and all contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment. Contain and absorb spill with dry sand, earth, inert material or vermiculite.
- DO NOT use sawdust as fire may result
- Scoop up solid residues and seal in labelled drums for disposal.
- Neutralise/decontaminate area.

► Clean up all spills immediately

Moderate hazard.

- ▶ Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.

Stop leak if safe to do so. **Major Spills**

- · Contain spill with sand, earth or vermiculite.
- ▶ Collect recoverable product into labelled containers for recycling.
- Neutralise/decontaminate residue (see Section 13 for specific agent).
- Collect solid residues and seal in labelled drums for disposal.
- ▶ Wash area and prevent runoff into drains.
- After clean up operations, decontaminate and launder all protective clothing and equipment before storing and re-using.
 - If contamination of drains or waterways occurs, advise emergency services

Version No: **3.6.1.1** Page **4** of **10** Issue Date: **05/25/2021**

HDQ Binding Buffer Print Date: 05/25/2021

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

- ▶ Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke
- ▶ Keep containers securely sealed when not in use.
- Safe handling

 Avoid physical damage to containers.
 - Always wash hands with soap and water after handling.
 - ▶ Work clothes should be laundered separately. Launder contaminated clothing before re-use.
 - Use good occupational work practice.
 - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
 - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
 - ▶ DO NOT allow clothing wet with material to stay in contact with skin

Other information

Conditions for safe storage, including any incompatibilities

Suitable container

Storage incompatibility

- ▶ Glass container is suitable for laboratory quantities
- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Inorganic peroxy compounds are potent oxidisers that pose fire or explosive hazards when in contact with ordinary combustible materials.

- Inorganic peroxides react with organic compounds to generate organic peroxide and hydroperoxide products that react violently with reducing agents.
- Inorganic oxidising agents can react with reducing agents to generate heat and products that may be gaseous (causing pressurization of closed containers). The products may themselves be capable of further reactions (such as combustion in the air).
- Organic compounds in general have some reducing power and can in principle react with compounds in this class. Actual reactivity varies greatly with the identity of the organic compound.
- Inorganic oxidising agents can react violently with active metals, cyanides, esters, and thiocyanates.
- Peroxides, in contact with inorganic cobalt and copper compounds, iron and iron compounds, acetone, metal oxide salts and acids and bases can react with rapid, uncontrolled decomposition, leading to fires and explosions.
- Inorganic reducing agents react with oxidizing agents to generate heat and products that may be flammable, combustible, or otherwise reactive. Their reactions with oxidizing agents may be violent.
- Incidents involving interaction of active oxidants and reducing agents, either by design or accident, are usually very energetic and examples of so-called redox reactions.

NOTE: May contain traces of perchloric acid or may, on contact with acids, produce an anhydrous perchloric acid an extremely reactive and explosive species. Many of the reported explosions involving perchlorate may result its ability to form unstable perchlorate esters or salts of the anhydrous acid.

WARNING:

- On the basis of experience with cobalt(III) perchlorate, attention is drawn to the possibility of stable metal perchlorates being converted by unintentional dehydration to unstable (endothermic) lower hydrates capable of explosive decomposition in the absence of impurities. Great care must be taken to avoid dehydration or desolvation of perchlorates.
- Metal perchlorates may be explosively reactive with finely divided aluminium, magnesium and zinc and other metals, calcium and strontium hydrides, glycol (on heating), sulfuric acid (with the formation of unstable perchloric acid), and trifluoromethanesulfonic acid.
- The perchlorate salts of the complexes of divalent cobalt, nickel and particularly iron ([tetramethyl[14]-N8 complexes) are potentially explosive and storage for more than 4 weeks is inadvisable
- Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous
- Avoid storage with reducing agents.
- Segregate chlorates from organic matter, acids, poisonous gases, flammables, corrosives, aluminium and ammonium salts and any other combustible material.
- Mixtures of chlorates with fibrous and absorbent organic materials such as wood, paper, leather, flour, sawdust, sugar, shellac, may be ignited or caused to explode by static sparks, friction or shock.
- The extreme hazardous nature of mixtures of metal chlorates with phosphorus or sulfur, apart from being powerful explosives, are dangerously sensitive to friction or shock; spontaneous ignition occasionally occurs.
- Mixtures with sucrose, lactose, chromium, sulfur dioxide, sodium amide, zirconium, germanium and titanium explode on heating.
- Forms incompatible sometimes explosive mixtures with thorium dicarbide, strontium hydride, hydrogen iodide, fluorine, cyanoguanidine, cyanides, dinickel trioxide, powdered carbon, aqua regia and ruthenium, nitric acid, manganese dioxide and potassium hydroxide or boron.
- Chlorates should not be allowed to come into contact with ammonium salts, aluminium and other powdered metals, phosphorous, silicon, sulfur, sulfides, sulfuric acid, nitrobenzene, iodides and tartaric acid
- Mixtures with hydrocarbons, metal phosphides (Zn, Ag, Al, Cu, Hg, Mg, etc), metal thiocyanates, metal sulfides, arsenic, carbon, phosphorous, sulfur, ammonium salts, powdered metals, arsenic trioxide, phosphorous, silicon, sulfur, sulfides, sulfites and hyposulfites are easily ignited (by friction impact or heat) and are potentially explosive.
- Metal chlorates in contact with strong acids liberate explosive chlorine dioxide gas. With concentrated sulfuric acid a violent explosion can occur unless effective cooling is used. Mixing potassium chlorate and concentrated sulfuric acid results in an explosion with optimum temperature range being 120-130. Heating a moist mixture of metal chlorate and a dibasic organic acid (tartaric or citric acid) liberates chlorine dioxide diluted with carbon dioxide.
- Fusion of chlorates with metal cyanides may lead to an explosion.
- Chlorates containing 1-2% bromate or sulfur are liable to spontaneous explosion
- ▶ Chlorates releases oxygen, chlorine and chlorine dioxide when heated above 300 deg. C..
- In presence of moisture may release oxygen and ozone
- Intimate mixtures of chlorates, bromates or iodates of barium, cadmium, calcium, magnesium, potassium, sodium or zinc, with finely divided aluminium, arsenic, copper, carbon, phosphorus, sulfur, hydrides of alkali- and alkaline earth-metals; sulfides of antimony, arsenic, copper or tin; metal cyanides, thiocyanates; or impure manganese dioxide may react explosively or violently, either spontaneously (especially in the presence of moisture) or on initiation by heat, impact or friction, sparks or addition of sulfuric acid.

BRETHERICKS HANDBOOK OF REACTIVE CHEMICAL HAZARDS. 4th Edition

RETHERICKS HANDBOOK OF REACTIVE CHEMICAL HAZARDS, 4th Edition

Version No: **3.6.1.1** Page **5** of **10** Issue Date: **05/25/2021**

HDQ Binding Buffer

Print Date: **05/25/2021**

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2	TEEL-3
sodium perchlorate	6.3 mg/m3	69 mg/m3	420 mg/m3
sodium perchlorate	3.8 mg/m3	41 mg/m3	250 mg/m3

Ingredient	Original IDLH	Revised IDLH
sodium perchlorate	Not Available	Not Available

Occupational Exposure Banding

Ingredient	Occupational Exposure Band Rating	Occupational Exposure Band Limit	
sodium perchlorate	E	≤ 0.01 mg/m³	
Notes:	Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.		

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

General exhaust is adequate under normal operating conditions. Local exhaust ventilation may be required in specific circumstances. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

reisonai protection

- Safety glasses with side shields.
- Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

 Version No: 3.6.1.1
 Page 6 of 10
 Issue Date: 05/25/2021

 Print Date: 05/25/2021
 Print Date: 05/25/2021

HDQ Binding Buffer

Skin protection See Hand protection below ▶ Wear chemical protective gloves, e.g. PVC. ▶ Wear safety footwear or safety gumboots, e.g. Rubber The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term Hands/feet protection Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 480 min Good when breakthrough time > 20 min Fair when breakthrough time < 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended See Other protection below **Body protection** Overalls. P.V.C apron. Other protection Barrier cream. Skin cleansing cream.

Respiratory protection

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.

Eve wash unit.

Try to avoid creating dust conditions.

SECTION 9 Physical and chemical properties

nformation on basic physical and chemical properties			
Appearance	Not Available		
Physical state	Liquid	Relative density (Water = 1)	Not Available
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Available
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available

Version No: 3.6.1.1 Page **7** of **10** Issue Date: 05/25/2021 Print Date: 05/25/2021

HDQ Binding Buffer

Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	Not Available

SECTION 10 Stability and reactivity

Reactivity	See section 7	
Chemical stability	 Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. 	
Possibility of hazardous reactions	See section 7	
Conditions to avoid	See section 7	
Incompatible materials	See section 7	
Hazardous decomposition products	See section 5	

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. Symptoms of exposure to perchlorates include shortness of breath, difficulty breathing and a bluish discolouration of the skin. The effects may be delayed for several hours following exposure. Nausea and vomiting are almost always apparent after chlorate poisonings usually with upper stomach pain. Diarrhoea may also occur. Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.
Skin Contact	Skin contact is not thought to have harmful health effects (as classified under EC Directives); the material may still produce health damage following entry through wounds, lesions or abrasions. There is some evidence to suggest that this material can cause inflammation of the skin on contact in some persons. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.
Eye	This material can cause eye irritation and damage in some persons.
Chronic	Toxic: danger of serious damage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. This material can cause serious damage if one is exposed to it for long periods. It can be assumed that it contains a substance which can produce severe defects. Chronic or sublethal exposure to inorganic chlorate may have negative effects on human health, such as redness of the eyes and skin (including skin inflammation), sore throat, abdominal pain, blue lips or skin, diarrhea, nausea, vomiting, shortness of breath, and unconsciousness. Sodium chlorate may damage the liver, kidneys and blood cells of humans. Animal testing showed that chlorate is toxic to the thyroid gland, although it does not cause mutations and is therefore unlikely to cause cancer. Chlorate does not appear to cause birth defects or chromosomal abnormalities in animal testing. Perchlorates may affect the use of iodine by the thyroid gland and chronic exposures may result in symptoms of thyroid dysfunction such as goitre.

HDQ Binding Buffer	TOXICITY Not Available	IRRITATION Not Available	
sodium perchlorate	TOXICITY Oral(Mouse) LD50; 551 mg/kg ^[2]	IRRITATION Not Available	
Legend:	Nature obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

Goitrogenic:

HDQ Binding Buffer

Goitrogens are substances that suppress the function of the thyroid gland by interfering with iodine uptake, which can, as a result, cause an enlargement of the thyroid (a goitre). Goitrogens include:

Vitexin, a flavonoid, which inhibits thyroid peroxidase, contributing to goitre
 Thiocyanate and perchlorate, which decrease iodide uptake by competitive inhibition and consequently increase release of TSH from the pituitary gland

 Version No: 3.6.1.1
 Page 8 of 10
 Issue Date: 05/25/2021

 LIDO Binding Duffer
 Print Date: 05/25/2021

HDQ Binding Buffer

Lithium, which inhibits thyroid hormone release

- Certain foods, such as soy and millet (containing vitexins) and vegetables in the genus Brassica (which includes broccoli, Brussels sprouts, cabbage, cauliflower and horseradish).

Caffeine (found in coffee, tea, cola and chocolate), which acts on thyroid function as a suppressant.

Acute Toxicity	*	Carcinogenicity	×
Skin Irritation/Corrosion	×	Reproductivity	X
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	X
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend:

🗶 – Data either not available or does not fill the criteria for classification

Data available to make classification

SECTION 12 Ecological information

Toxicity

	Endpoint	Test Duration (hr)	Species	Value	Source
HDQ Binding Buffer	Not Available	Not Available	Not Available	Not Available	Not Available
sodium perchlorate	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	48h	Fish	0.004mg/L	4
	EC50	72h	Algae or other aquatic plan	nts >435.7mg/l	2
	LC50	96h	Fish	396.486-712.077m	g/l 4
	EC50	48h	Crustacea	>100mg/l	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Perchlorate poses a human health concern because this contaminant has the same ionic size as iodide, and can compete with iodide for uptake into the thyroid gland, causing changes in thyroid hormone levels and possibly thyroid disorders. Public concerns have generated considerable legislation designed to minimise potential damage. The environmental impacts of perchlorate have been less well studied, but the pollutant is clearly being transferred between abiotic and biotic ecosystem components. Perchlorate is a highly soluble oxyanion that is very stable and nonreactive in water. Perchlorate salts also have a very low volatility. Although a strong oxidizing agent, the perchlorate anion is stable in the environment. Perchlorate does not form complexes with metals in the same manner as other anions, and it does not readily sorb to material in the environment. This combination of perchlorate solubility, stability, and mobility creates the potential for both localised and area-wide potential ecotoxicological effects, as it is a relatively non-reactive and very stable contaminant, with very low biodegradation rates under many natural conditions. Biodegradation of perchlorate in the natural environment (e.g., sediments) will not occur unless significant levels of organic carbon are present, oxygen and nitrate are depleted, and perchlorate-degrading anaerobic bacteria are present. Perchlorate is a highly toxic compound that is stable and persistent in the environment. Once perchlorate gets into the food chain or water supply, it does not break down easily. It has been detected in surface and ground water, soils and food (lettuce, bottled water, milk, meat, kelp, animal feed). It is stable, water soluble and persistent; it is not volatile and does not readily adhere to soil. It is also found in plants because its solubility in water allows it be taken up by their roots. The populations considered to be most sensitive to perchlorate exposure are nursing infants, children, post-menopausal women, and people with hypothyroidism. Perchlorate interferes with thyroid functioning and is especially dangerous to fetuses, babies, and children. It causes thyroid iodine deficiency that in turn limits the gland's ability to produce a hormone essential to neurological development, leading to neurological disorders. A human reference dose (daily exposure level below which EPA believes there would be no serious negative effects to a human over their lifetime) of 0.0007 mg/kg per day has been suggested by the US EPA, who considers drinking water safe if it contains no more than 24.5 parts per billion (ppb) of perchlorate. Perchlorate has contaminated ground and surface waters that are currently being used for irrigation in food production. Physical processes, including mixing and dispersion, control the distribution of perchlorate in groundwater. Soil is not expected to naturally contain perchlorate. Perchlorate does not adsorb onto inorganic surfaces, including hydrous ferric oxide, smectite, and manganese oxide. The inorganic perchlorate compounds introduced into soils are readily soluble and are not strongly adsorbed by other soil components. In soils, perchlorate is chemically stable and is expected to behave in a manner similar to dissolved minerals. While perchlorate is subject to leaching, its content in the soil is expected to remain in equilibrium in irrigated crop production systems. Perchlorate has been shown to be absorbed into crops from irrigation water or other sources such as fertilizers. Plants absorb nutrients and pollutants from solutions in the soil and are expected to accumulate perchlorate taken from the soil, which may be influenced by external factors such as plant species and maturity, nutrient concentrations, and consumptive use of water. While there is evidence that a portion of the absorbed perchlorate may be reduced inside the plant through biochemical pathways, the majority of the absorbed perchlorate will translocate to and concentrate in the leaf tissue where oxygen is always present and will thus limit its reduction. This is illustrated by the detection of higher perchlorate concentrations in leaves collected later in the growing season and in dead leaves compared to younger, live leaves, proving that perchlorate is recycled back into the soil upon decomposition of dead leaf litter. To minimise the potential recycling of perchlorate by leaf litter it is recommended that dead leaves be collected and composted, or phytoremediation be designed to enhance rapid rhizodegradation (rhizoremediation). The fate of perchlorate in streambed sediments is becoming a concern due to the increasing number of groundwater and surface water contamination sites. Results indicate that CIO4- penetration into sediments could be affected by numerous factors, such as temperature, microbial degradation, CIO4- surface water concentration, and sediment physico-geological properties. Maximum CIO4- penetration into sediments at study sites was 30 cm below the sediment-water surface. Evidence suggests that microbial reduction is responsible for perchlorate depletion in stream sediments. Biodegradation of CIO4- occurred over a seasonally variable active depth zone of 1-10 cm, implying that there was a rapid natural attenuation potential of perchlorate in near-surface sediments. Perchlorate is reduced to intermediate compounds (chlorate [Cl(V)] and chlorite [Cl(III)]) and eventually to chloride in anaerobic environments. Perchlorate reduction is both thermodynamically and microbially enhanced under denitrifying conditions. There are numerous strains of micro-organisms capable of reducing both chlorate and perchlorate under anoxic conditions. Perchlorate is not likely to come out of solution given its low vapour pressure. Droplet size during showering would likely preclude significant inhalation of perchlorate-contaminated water as an aerosol. In perchlorate-contaminated lakes and streams, perchlorate is detected infrequently in fish heads, fillets, and whole bodies, but may be detected more often depending on species and seasonal trends, and always at concentrations higher in the fish than in the water. Perchlorates may perturb thyroid-hormone concentration in fish; this may affect growth and neurological development. Data from fish indicates that perchlorate can also disrupt sexual development. Certain have been so dramatic that female fish have been mistaken for males. Several females displayed male-courtship behaviour and produced sperm. This is suggestive of the fact that perchlorate may act as an androgen (male sex hormone). The concentration of perchlorate used in these studies was at least a 1000 times the US EPA limit (24.5 parts per billion in natural bodies of water. DO NOT discharge into sewer or waterways

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
	No Data available for all ingredients	No Data available for all ingredients

Bioaccumulative potential

Ingredient Bioaccumulation	
----------------------------	--

 Version No: 3.6.1.1
 Page 9 of 10
 Issue Date: 05/25/2021

 Print Date: 05/25/2021
 Print Date: 05/25/2021

HDQ Binding Buffer

Ingredient	Bioaccumulation
	No Data available for all ingredients
Mobility in soil	
Ingredient	Mobility
	No Data available for all ingredients

SECTION 13 Disposal considerations

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- Reuse
- ► Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first
- Where in doubt contact the responsible authority.

Product / Packaging disposal

FOR DISPOSAL OF SMALL QUANTITIES:

- Cautiously acidify a 3% solution or a suspension of the material to pH 2 with sulfuric acid.
- Gradually add a 50% excess of aqueous sodium bisulfite with stirring at room temperature. (Other reducers such as thiosulfate or ferrous salts may substitute; do NOT use carbon, sulfur or other strong reducing agents). An increase in temperature indicates reaction is taking place. If no reaction is observed on the addition of about 10% of the sodium bisulfite solution, initiate it by cautiously adding more acid.
- If manganese, chromium or molybdenum are present adjust the pH of the solution to 7 and treat with sulfide to precipitate for burial as a hazardous waste. Destroy excess sulfide, neutralise and flush the solution down the drain (subject to State and Local Regulation). [Sigma/Aldrich]
- ► Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and / or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- ▶ Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 Transport information

Labels Required

Marine Pollutant NO

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
sodium perchlorate	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
sodium perchlorate	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

This product has been classified in accordance with the hazard criteria of the Hazardous Products Regulations and the SDS contains all the information required by the Hazardous Products Regulations.

sodium perchlorate is found on the following regulatory lists

Canada Categorization decisions for all DSL substances

Canada Toxicological Index Service - Workplace Hazardous Materials Information

System - WHMIS GHS

National Inventory Status

National Inventory Status

Version No: 3.6.1.1 Issue Date: 05/25/2021 Page 10 of 10 Print Date: 05/25/2021

HDQ Binding Buffer

National Inventory Status Australia - AIIC / Australia Yes Non-Industrial Use Canada - DSL Yes Canada - NDSI No (sodium perchlorate) China - IECSC Yes Europe - EINEC / ELINCS / NLP Yes Japan - ENCS Korea - KECI Yes New Zealand - NZIoC Yes Philippines - PICCS Yes USA - TSCA Yes Taiwan - TCSI Yes Mexico - INSQ Vietnam - NCI Yes Russia - FBEPH Yes = All CAS declared ingredients are on the inventory Legend: No = One or more of the CAS listed ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 Other information

Revision Date	05/25/2021
Initial Date	01/23/2021

SDS Version Summary

Version	Date of Update	Sections Updated
2.6.1.1	05/24/2021	Classification

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average

PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit $_{\circ}$

IDLH: Immediately Dangerous to Life or Health Concentrations

ES: Exposure Standard

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level

LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value

LOD: Limit Of Detection

OTV: Odour Threshold Value

BCF: BioConcentration Factors

BEI: Biological Exposure Index

AIIC: Australian Inventory of Industrial Chemicals

DSL: Domestic Substances List

NDSL: Non-Domestic Substances List

IECSC: Inventory of Existing Chemical Substance in China

EINECS: European INventory of Existing Commercial chemical Substances

ELINCS: European List of Notified Chemical Substances

NLP: No-Longer Polymers

ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory

NZIoC: New Zealand Inventory of Chemicals

PICCS: Philippine Inventory of Chemicals and Chemical Substances

TSCA: Toxic Substances Control Act

TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas

NCI: National Chemical Inventory

FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Powered by AuthorITe, from Chemwatch